
Lecture 4 – Accretion

Accretion is the process where a massive object continuously accumulates more mass by

gravitationally attracting nearby gas. Accretion onto compact objects (e.g., black holes, neutron

stars, and white dwarfs) is the most efficient source of energy in the universe. Consider a

compact object of mass M with a radius r∗ accreting a gas cloud of mass m onto its surface,

the energy release is the gravitational potential energy GMm/r∗. If we express it in terms of

the rest mass energy of the cloud (mc2 where c is the speed of light), the available energy is

0.5(rs/r∗)mc2 where rs = 2GM/c2 = 3(M/M⊙) km is the Schwarzschild radius of the massive

object. In other words, the energy conversion efficiency is 50% for black holes (r∗ = rs) and

∼ 20% for neutron stars (r∗ ∼ 10 km, M ∼ 1.4M⊙). In comparison, hydrogen nuclear fusion

(411H →4
2 He + 2e+ + 2νe + 2γ) converts four protons into a helium with an energy conversion

efficiency of (4mp − mHe)/(4mp) ∼ 0.007, i.e., only less than 1% of the rest mass energy is

released. Accretion onto compact objects is therefore an extremely powerful energy source.

1 Bondi Accretion

Consider a compact object embedded in a uniform medium of density ρ∞ and sound speed cs,∞.

The compact object is represented by a point mass M , and medium is an ideal fluid (no shocks)

whose self-gravity is negligible compared to M . The system is in a steady state (∂/∂t = 0)

such that the continuity and momentum equations become

∇ · (ρv) = 0, (1)

v · ∇v +
∇P

ρ
+∇Φ = 0. (2)

Since the system is spherically symmetric, the contuinity equation can be written as
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Note that we have replaced ∂/∂r with d/dr because of the steady-state assumption. Similarly,

the momentum equation in spherical coordinates is
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= 0. (4)
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1.1 Isothermal gas

For isothermal gas P = ρc2s, the momentum equation becomes
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= 0. (5)

Eliminating ρ using Eq. 3, we obtain
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, (6)

where

rc ≡
GM

2c2s
. (7)

Before we solve Eq. 6, we shall first examine its qualitative properties. The right-hand

side contains two terms that scale with r−2 and r−1, respectively. Therefore, we expect the

right-hand side to be negative at small r (when the r−2 term dominates), crossing zero at rc,

and then turning positive at large r1. At r = rc, the left-hand side also vanishes, which can be

realized by v2 = c2s, allowing two types of solutions:

(i) dv2/dr < 0, and v2 goes from supersonic at r < rc to subsonic at r > rc.

(ii) dv2/dr > 0, and v2 goes from subsonic at r < rc to supersonic at r > rc.

The first solution corresponds to the spherical accretion that we are studying, while the second

solution corresponds to the “stellar wind” problem, where gas is ejected outward by a central

star. Eq. 6 applies to both types of problems as v appears quadratically. In both cases, the

gas is accelerated from subsonic to supersonic speeds, and the location where this transition

happens (rc) is called the transonic point (or just sonic point).

There are, in fact, another family of solutions to Eq. 6 that does not involve a transition

from subsonic to supersonic flows. This is possible because the left-hand side can also vanish

if dv2/dr = 0. Therefore, we can have thw following types of solutions:

(iii) v2 increases with r at small r, flattens out and reaches a maximum (< c2s) at rc (i.e.,

dv2/dr|r=rc = 0 ), and then decreases at larger r. The flow remains subsonic at all r.

(iv) v2 decreases inversely with r at small r, reaches a minimum (> c2s) at rc (i.e., dv
2/dr|r=rc =

0 ), and then increases at larger r. The flow remains supersonic at all r.

For spherical accretion, types (i) and (iii) are both plausible solutions. Type (iii) corresponds

to the case where gas slowly settles to hydrostatic equilibrium. In contrast, type (i) represents

1It can also remain positive or negative at all r. However, that corresponds to double-valued solutions where
there are two v’s at a given r.
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a more likely case where gas is accelerated to supersonic speeds at the sonic point, losing causal

contact with the ambient medium and starting to free-fall onto the central object.

We are now in a good position to solve Eq. 6, which can be done by separation of variables:∫
1
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− 4
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r
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r

rc
+ C = 0 (8)

where C is the integration constant. Different values of C corresponds to different curves in the

r/rc vs. v/cs plane. The Bondi accretion and stellar wind solutions correspond to C = 3, while

the solutions without a sonic point correspond to C < 3. The C > 3 solutions are unphysical

as they have double-valued v’s at a given r.

Since the system is in a steady state, the accretion rate Ṁ = 4πr2ρv must be the same every-

where, or else there would be an accumulation of mass, violating the steady-state assumption.

At large r, Eq. 8 becomes

ln
v2

c2s
+ ln

r4

r4c
+ C = 0 ⇒ vr2 = eC/2csr

2
c . (9)

Since Ṁ at the sonic point is the same as Ṁ at large r: we obtain the accretion rate

Ṁ = 4πr2ρ∞v = 4πeC/2r2cρ∞cs = 4πeC/2G
2M2

4c4s
csρ∞ = πe3/2

G2M2

c3s
ρ∞. (10)

The Bondi accretion rate scales with M2 and thus is sensitive to the mass of the central object.
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