
Lecture 4 – Hydrostatic Equilibrium

A fluid is in hydrostatic equilibrium when the gravity acting on it (either external or from

its own) is balanced by the pressure gradient force such that the fluid is at rest:

dv

dt
= −∇P

ρ
−∇Φ = 0 ⇒ ∇P = −ρ∇Φ. (1)

1 Spherically symmetric, self-gravitating gas

A spherically symmetric object held together under its own gravity (“self-gravity”) is frequently

encountered in astrophysics: stars, molecular clouds, planets (gas giants) are the classical

examples. In addition, objects consist of stars (star clusters) or even dark matter (dark matter

halos) are also governed by similar physics, where random motion of particles plays the same

role of thermal pressure – countering the gravitational collapse.

In spherical coordinates, assuming spherically symmetric, the gradient of a scalar field is

simply ∇f = ∂rf , so the condition of hydrostatic equilibrium is

dP

dr
= −ρdΦ

dr
= −ρg. (2)

Since we consider self-gravity, the gravitational field

g(r) =
GM(r)

r2
=
G

r2

∫ r

0

4πr2ρ(r)dr (3)

depends on the radial mass (or density) profile1, which in turn depends on the radial profile of

pressure.

1The “radial profile” of a quantity Q is the distribution of Q in the radial direction, i.e., Q as a function of
radius.
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1.1 Isothermal gas

1.1.1 Singular isothermal sphere

For isothermal gas, P = ρc2s, where the sound speed cs = (∂P/∂ρ)1/2 is a constant. Therefore,

Eq. 2 becomes

c2s
dρ

dr
= −ρG

r2

∫ r

0

4πr2ρ(r)dr,

⇒ c2s
4πG

r2
1

ρ

dρ

dr
= −

∫ r

0

r2ρ(r)dr,

⇒ c2s
4πG

1

r2
d

dr

(
r2
1

ρ

dρ

dr

)
= −ρ(r). (4)

If we assume density follows a power-law profile (an educated guess), ρ(r) = Cr−α, we can

substitute it in the above ODE: ρ−1dρ/dr = d(ln ρ)/dr = −α/r ⇒ −c2sα/(4πGr2) = Cr−α,

⇒ α = 2 ⇒ C = c2s/(2πG). Therefore, we have found a solution

ρ(r) =
c2s

2πGr2
. (5)

This solution blows up (ρ→ ∞) at r = 0 and is known as the singular isothermal sphere.

1.1.2 Isothermal sphere with a core

We can avoid the unphysical boundary condition at r = 0 by requiring the density profile to

flatten at the central region within a “core” with a characteristic radius rc and density ρc. By

doing so, we introduce a scale to the scale-free, self-similar power-law solution in Eq. 5.

Before we solve Eq. 4, let us re-examine the hydrostatic equilibrium condition in terms of

the gravitational potential Φ:

d(ρc2s)

dr
= −ρdΦ(r)

dr
⇒

∫ ρ

ρc

dρ

ρ
= − 1

c2s

∫ Φ

0

dΦ ⇒ ρ(r) = ρc exp

[
−Φ(r)

c2s

]
(6)

where we define Φ = 0 at the center. Substituting c2sd(ln ρ)/dr = −dΦ/dr in Eq. 4, we recover

the Poisson equation

1

r2
d

dr

(
r2
dΦ

dr

)
= ∇2Φ(r) = 4πGρ(r). (7)

in spherical coordinates.

It is often useful to cast equations into a dimensionless form. We can define the dimensionless

gravitational potential ψ = Φ/c2s such that ρ = ρce
−ψ ⇒ d(ln ρ)/dr = −dψ/dr, and Eq. 4,

becomes

c2s
4πGρc

1

r2
d

dr

(
r2
dψ

dr

)
= e−ψ (8)

We now can make radius dimensionless by introducing ξ = r/rc where rc =
√
c2s/(4πGρc), and



PHYS 4017: Fluid Mechanics 3

the ODE becomes

1

ξ2
d

dξ

(
ξ2
dψ

dξ

)
= e−ψ, (9)

which is known as the Emden-Chandrasehkar equation. We impose the boundary conditions:

ψ = 0 and dψ/dξ = 0 at ξ = 0 In terms of ρ and r, this corresponds to ρ = ρc and dρ/dr = 0

at r = 0. In other words, we require that the density flattens to a finite value at the center

rather than increases indefinitely.

There is no analytic solution to Eq. 9, but there are asymptotic solutions at small and large

ξ. As ξ → 0, e−ψ ≈ 1 ⇒ ξ2ψ′ ≈ ξ3/3 ⇒ ψ ≈ ξ2/6. Therefore, the density profile near the

center is

ρ(r) = ρc/e
ψ ≈ ρc

1 + r2/(6r2c )
. (10)

On ther other hand, as ξ → ∞, the asymptotic solution is ψ ≈ ln(ξ2/2), so the density profile

becomes

ρ(r) ≈ 2ρc
ξ2

=
2ρcr

2
c

r2
=

c2s
2πGr2

, (11)

recovering the singular isothermal sphere.

1.1.3 The Bonnor-Ebert sphere

In reality, clouds do not exist in a vacuum. Instead, a cloud can be embedded in a uniform

medium that provides an external pressure confining the cloud. Suppose the medium has a

density of ρt and a pressure Pext = ρtc
2
s, we can integrate the total mass of an isothermal sphere

up to a truncation radius rt where ρ(rt) = ρt:

M =

∫ rt

0

4πr2ρdr =

∫ rt

0

4π(rcξ)
2ρce

−ψrcdξ = 4πr3cρc

∫ rt

0

d

dξ

(
ξ2
dψ

dξ

)
dξ

= 4πr3cρc
(
ξ2ψ′) |ξ=ξt = c3s√

2π1/2G3/2ρ
1/2
c

ρ
1/2
t

ρ
1/2
t

(
ξ2ψ′) |ξ=ξt = c4s

P
1/2
ext G

3/2
m, (12)

where

m =
1√
2π1/2

ρ
1/2
t

ρ
1/2
c

(
ξ2ψ′) |ξ=ξt (13)

is a dimensionless number. Numerically, m has a maximum value of 1.18 at ρc/ρt = 14. We

can define the Bonnor-Ebert mass :

MBE = 1.18
c4s

G3/2P
1/2
ext

= 1.18
c3s

G3/2ρ
1/2
t

(14)
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which represents the maximum mass a cloud in hydrostatic equilibrium in the ambient density

of ρt and sound speed of cs. More massive clouds are unstable as hydrostatic equilibrium cannot

be established and thus they would undergo gravitational collapse.

1.2 Polytropic gas

For a polytropic gas, P = Aργ where A is a constant. As opposed to the isothermal gas, the

sound speed cs = (dP/dρ)1/2 = (γAργ−1)1/2 is no longer a constant2 but is now a function of

density (and thus radius). Therefore, we should put c2s inside the bracket of Eq. 4:

1

4πG

1

r2
d

dr

(
r2c2s

1

ρ

dρ

dr

)
= −ρ, (15)

⇒ 1

4πG

1

r2
d

dr

(
r2γAργ−1 1

ρ

dρ

dr

)
= −ρ. (16)

Introducing the polytropic index n = (γ − 1)−1 ⇒ γ = 1/n + 1 ⇒ γ − 2 = 1/n − 1. Let

ρ = ρcθ
n ⇒ dρ/dr = nρ0θ

n−1dθ/dr ⇒ ργ−2 = (ρcθ
n)1/n−1 = ρ

1/n−1
c θ1−n. Substituting in Eq. 15,

1

4πG

1

r2
d

dr

[
r2

(
1

n
+ 1

)
Aρ1/n−1

c θ1−nnρ0θ
n−1dθ

dr

]
= −ρcθn,

⇒ A(1 + n)ρ
1/n−1
c

4πG

1

r2
d

dr

(
r2
dθ

dr

)
= −ρcθn. (17)

Define the core radius

rc =

[
A(1 + n)ρ

1/n−1
c

4πG

]1/2

=

[
A(1 + n)Pc

4πGρ2c

]1/2
, (18)

where Pc = Aρ
1/n+1
c , we can make the radius dimensionless by letting ξ = r/rc. The ODE now

becomes

1

ξ2
d

dξ

(
ξ2
dθ

dξ

)
= −θn. (19)

This is known as the Lane-Emden equation, with the boundary conditions: θ = 1 and θ′ = 0

at ξ = 0. Analytic solutions only exist for n = 0, 1, 5, while other cases have to be integrated

numerically. Isothermal gas corresponds to n→ ∞, which needs to be treated separately as we

did in the previous section. For n < 5, θ drops to zero at a finite radius, and so we can define

the size of the sphere when θ(ξmax) = 0.

1.2.1 The mass-size relation of a polytropic sphere

A polytropic sphere has a size of R = ξmaxrc ∝ ρ
(1−n)/2n
c and a mass of

M =

∫ R

0

4πr2ρdr =

∫ ξmax

0

4πr2cξ
2ρcθ

nrcdξ = 4πr3cρc(ξ
2|θ′|)|ξ=ξmax ∝ ρ(3−n)/(2n)c . (20)

2Note that the isothermal gas is a special case where γ = 1.
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The mass-size relation is therefore

M ∝ ρ(3−n)/(2n)c ∝ R
2n
1−n

3−n
2n ∝ R(3−n)/(1−n) (21)

A white dwarf is a stellar remnant where the electron degenerate pressure dominates over

thermal pressure and can be well-described by non-relativistic degenerate gas, n = 1.5 (γ =

5/3), Therefore, its mass-size relation is

M ∝ R
3−1.5
1−1.5 ∝ R−3. (22)

White dwarfs therefore have the counter-intuitive property that its size shrinks as it accretes

more mass. As a white dwarf becomes more massive, its particle velocities become comparable

to the speed of light, and we need to consider the relativistic effect. For relativistic degenerate

gas, n = 3 (γ = 4/3), the mass-size relation is

M ∝ R
3−3
1−3 ∝ R0, (23)

and thus M is independent of R. This implies that there is a maximum mass of a white dwarf

M ≈ 1.4M⊙, above which hydrostatic equilibrium can no longer be established. This is known

as the Chandrasehkar mass.
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