
Lecture 2 – Dissipation

1 Viscosity

In the previous lecture, we have assumed that there is no dissipation in the fluid (ideal fluid).

In reality, the relative motion between fluid elements causes dissipative forces called viscosity.

A familar example of a viscous fluid is honey (high viscosity), which is more difficult to stir

compared to water (low viscosity). The stickiness of honey comes from viscosity.

1.1 Velocity Gradient

The relative motion between fluid elements can be described by the velocity gradient tensor

∇v = ∂ivj. (1)

We can decompose ∇v into three irreducible tensors:

∇v = ∂ivj =
1

2
(∂ivj + ∂jvi) +

1

2
(∂ivj − ∂jvi)

=
1

3
∂kvkδij +

1

2
(∂ivj + ∂jvi)−

1

3
∂kvkδij +

1

2
(∂ivj − ∂jvi)

=
1

3
θI+ S+ R, (2)

where θ is the expansion rate (scalar), S is the trace-free, symmetric shear tensor, and R is the

anti-symmetric rotation tensor, respectively defined as

θ = ∇ · v, (3)

S =
1

2

(
∇v +∇v⊺ − 1

3
θI
)

(4)

R =
1

2
(∇v −∇v⊺) . (5)

The prefactor 1/3 is such that the shear tensor is trace-free: Tr(S) = Sii = ∂ivi−∂kvkδii/3 = 0.

Note that δii = 3 (the trace of an identity matrix) and that i and k are dummy variables.

The veolcity divergence changes the volume of the fluid via isotropic expansion/compression,

keeping the shape of the fluid element fixed. On the other hand, the shear tensor changes a

fluid element’s shape while keeping its volume fixed (as it’s trace-less). The rotation tensor

controls, well, the rotation of the fluid element, which can be seen by noting that it is a linear
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combination of the vorticity ω = ∇× v:

1

2
ϵijkωk =

1

2
ϵijkϵabk∂avb =

1

2
(∂ivj − ∂jvi) = Rij. (6)

The velocity gradient is a rank 2 tensor in 3D and thus has 3 × 3 = 9 degrees of freedom

(d.o.f.). On the other hand, the velocity divergence is a scalar (d.o.f. = 1); the rotation tensor

is antisymmetric (d.o.f. = 3); the shear tensor is a symmetric tensor (d.o.f. = 6), but it is also

trace-free, which is an additional constrant, so its d.o.f. = 6−1 = 5. In other words, the d.o.f. of

the three tensors add up to 1 + 3 + 5 = 9, as expected.

1.2 Momentum Equation with Viscosity (Navier-Stokes Equation)

We assume Newtonian fluids, where the viscous stress tensor is linearly proportional to the

velocity gradient (Hooke’s law: stress ∝ strain). In this case, the viscous stress tensor can be

written as

Tvisc = −(µθI+ 2ηS), (7)

where µ and η are the coefficients of the bulk viscosity and shear viscosity, respectively. There

is no corresponding term for the rotation tensor, as rotation does not lead to a change in volume

or shape. We can now add an extra force term to our momentum equation:

ρ
dv

dt
= −∇P −∇Tvisc = −∇P +∇(µθ) + 2∇ · (ηS) (8)

This is the famous Navier-Stokes equation. If we further assume incompressible flows (θ =

∇ · v = 0), the bulk viscosity term vanishes, while the shear viscosity term can be expanded

into 2η∇ · S = η∂i(∂ivj + ∂jvi) = η[∇2v +∇(∇ · v)] = η∇2v, assuming η is spatially constant.

We therefore obtain the Navier-Stokes equation in its most common form:

dv

dt
= −∇P

ρ
+ ν∇2v, (9)

where ν = η/ρ is the kinetic viscosity. Viscosity results in the diffusion of the velocity field,

which smoothes out shear flows.

1.3 Energy Equation with Viscous Dissipation

Just like pressure provides an energy flux of Pv, viscosity also provides an energy flux of Tviscv.

Therefore, we have an extra term in the energy equation:

∂(ρe)

∂t
+∇ · [(ρe+ P )v] +∇ · (Tviscv) = 0. (10)

Using the continuity equation, this reduces to

ρ
de

dt
+∇ · (Pv) +∇ · (Tviscv) = 0. (11)
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Expanding each term: de/dt = v ·dv/dt+du/dt, ∇· (Pv) = v ·∇P +P∇·v, and ∇· (Tviscv) =

∂i(Tijvj) = vj∂iTij + Tij∂ivj = v · (∇ · Tvisc) + Tvisc : ∇v. We can see that there is a v · (...) in
each term, and that they add up to the Navier-Stokes equation (Eq. 8). Dropping there terms,

the energy equation reduces to

ρ
du

dt
= −P∇ · v − Tvisc : ∇v. (12)

Note that A : B ≡ AijBij = AijB
⊺
ji = Tr(AB⊺). Therefore, in addition to adiabatic contraction,

the fluid can also gain energy via viscous dissipation, which transform the internal relative

motion (i.e., velocity gradient) into heat.

It is perhaps more informative to express the energy equation in terms of entropy. Using

the first law of thermodynamics and the continuity equation, we obtain

ρT
ds

dt
= −Tvisc : ∇v = (µθI+ 2ηS) :

(
1

3
θI+ S+ R

)
. (13)

Contracting a symmetric tensor with an anti-symmetric tensor leads to zero and thus R drops

out. Also, the term S : I and I : S vanish as S is trace-free. Therefore, we are left with

ρT
ds

dt
= µθ2 + 2ηS : S ≥ 0, (14)

as S : S = SijSij is just the quadratic sum of all the 9 components of S. Entropy is no longer

conserved in viscous fluids. It can be generated via dissipation and convert kinetic energy into

heat, but it can never drop, in line with the second law of thermodynamics.
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